ISRAEL JOURNAL OF MATHEMATICS. Vol. 20, Nos. 34, 1975

ON THE LOCAL STRUCTURE OF SUBSPACES OF
BANACH LATTICES

BY

W. B. JOHNSON' anp L. TZAFRIRI

ABSTRACT

The conjecture that every Banach space contains uniformly complemented
I;'s for some 1 = p = is verified for subspaces of Banach lattices which do
not contain I2’s uniformly.

I. One of the main problems in the study of local (i.e., finite dimensional)
structure of Banach spaces is whether Lindenstrauss’ [7] “‘uniformly com-
plemented [,-conjecture’ is true; i.e., whether every infinite dimensional
Banach space X contains a uniformly complemented sequence (E,) of
subspaces such that, for some p, | =p ==, supd(E,, ;) <. (Here d(E,F) is
the Banach-Mazur distance coefficient inf{||T|-|T~'|: T is an isomorphism from
E onto F}.) Recently the second-named author verified the uniformly com-
plemented [;-conjecture for Banach spaces X which have an unconditional
basis (cf. [15]). It follows from the main result in the present paper that the
uniformly complemented [;-conjecture is also true for Banach spaces which
are Banach lattices or, more generally, have local unconditional structure. Our
main result, combined with the results in [5], in fact yields the following:

TueorREM 1.  Suppose that X is a subspace of a Banach lattice L and L does
not contain 1% uniformly for all n.

A. Given K <, ¢ >0 and an integer n, there is an integer N = N(K,¢e,L) so
thatifEC Xand d(E,11)<K, then E D Fwithd(F,lI})=t+¢e¢andFis 1 +e¢-
complemented in L. Moreover, if X is not super-reflexive, then X contains I}
uniformly for large n.

B. If X is super-reflexive, then given any sequence (H,) of subspaces of X with
dim H, — «, there is a uniformly complemented sequence of subspaces (G.)
with G, C H,, d(G,,15") =<2, and k(n)— .
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Part A of Theorem 1 was proved in [5]. After this paper was submitted, we
realized in conversations with Pelczynski and Rosenthal that by using the
argument for case B and considerably more machinery, it can be shown in case
B that X is locally w-Euclidean in the sense of Pelczynski and Rosenthal [12];
i.e., there is a A < so that for each integer n, there is N = N(n) such that if
ECX and dimE =N(n) then EDF with d(F,15)<2 and F is A-
complemented in X.

Part B gives a wide class of super-reflexive spaces which are sufficiently
Euclidean in the sense of Stegall and Retherford [14]; i.e., which contain
uniformly complemented copies of /7 for all n. It should be noted that
super-reflexivity cannot be replaced by reflexivity in Part B, since in [6] a
reflexive Banach space with unconditional basis is constructed which does not
contain /2 uniformly for all n but which is not sufficiently Euclidean.

As an immediate corollary of Theorem 1, we have

CoroLLARY 1. If X is a subspace of a Banach lattice which does not contain
12 uniformly for all n, then X contains uniformly complemented subspaces E,
with sup d(E,,[7) < or supd(E,,[3) <.

We use standard Banach space theory notation as may be found in [9]. For
definitions of not yet standard terms (e.g., local unconditional structure) see [5].

II. The main result

Throughout this section we assume that X is a subspace of a Banach lattice
L for which there is q < so that if x,y € L with |x|a]y| =0, then |x + y||* =
lx||* + lly|l*, i.e. L admits a lower I, estimate. It was observed in [5] that if L is
any Banach lattice which does not contain /2 uniformly for large n, then there
is g <« and an equivalent lattice norm on L which satisfies such a lower /,
estimate. Indeed, by Corollary I11.4 in (5] or Maurey’s generalization [10] of a
result of Rosenthal [13], if (L, ||| - ||) is a Banach lattice which does not contain
I uniformly for all n, there exist ¢ >0 and q <« so that ||| Zx |||* =
c¢(Z || xi JIl ¥) whenever (x;) C L with |x;| A |x;] = 0 for i # j. Define ||-| on L by
[lxll=sup{(Zfl x: [ $)" : |x:[a]x;] = 0 for i#j and Zx; = x}; it is easy to check
that [|- || is an equivalent Banach lattice norm on L which satisfies a lower [,
estimate.

We would like to recall some observations, most of which are due to
Meyer-Nieberg [11]. Given a non-negative functional x* on L with ||x*|=1,
.- on L by setting ||[x[.» = x*(|x[). It is clear
«» is additive on the positive cone of L, hence (after dividing out by

one can define a semi-norm || -
that || - |




294 W. B. JOHNSON AND L. TZAFRIRI Israel J. Math.,

the ideal {x : x *(|x[) = 0}) the completion of (L, || - || x-) is an abstract L-space
which is isometric to L(s) for some measure u, by Kakutani’s well-known
theorem. Obviously, the natural identity mapping from (L, || - || ) to (L, || - || <)
is norm decreasing. Now since (L, || - || ) satisfies a lower [, estimate, L is
o-complete and o-order continuous, so that in fact the image of L in L,(u) is
an order ideal.

Given a finite dimensional subspace H of L, we will be interested in the
behavior of the ratio between (x|l and | x || .- as x ranges over H and x* over
nonnegative functionals of unit norm. We let

8(H) = supinf {x*(|x|):x € H,||x| = 1}.
x*z0ifx*=1
Our first main step in the proof of Part B in Theorem 1 will be to show that if
8(H) is small, then H contains a “long” finite sequence of vectors which are
almost disjoint. More precisely, we have

LemMa 1. Given k there is 0 <€ = e(k,q) so that if H is a subpace of L and
8(H) < ¢, then there are unit vectors (x;):., in H and disjoint vectors (y:)i-: in L
so that 0= |y|=|x;| and |x; — y:||S k)" for 1=i=k.

Proor. The argument used here was suggested by the proof of Proposition
3.1in {12). Choose € = e(k,q) so that [1 — (1 —2k’€)?]"* <27k . If §(H) <,
we show that (x;)%.; and (y")i-5-: can be constructed by induction so that for

each j, 1=j =k, (y!)., are disjoint, 0= |yi| =|x/, and

m I = yil<G—-D27'k™

After showing this we will set y%i =y thus completing the proof.
For the first step, simply choose a unit vector x, in H and set yi = x,. Suppose
that (x;)!-, and (y!{)i-; have been defined to satisfy (1). For 1 =i =j, choose
non-negative y*€ L* so that |y*||=1 and y¥(y!)=|y![. Of necessity,
y*(yi)=0for i#h. Let x*= (S, y¥%) ||Zl-,y*["". By the definition of 8(H),
there is a unit vector x;,, in H, for which x*(|x;..|) <e.
Let u = (|x;.i| = 27"k 7?2l |yi)".

(If L is a function lattice, the support of u is the set where |x;.,| is larger than a
small multiple of =i_,|y!|). Let P be the band projection on L generated by u
(so that if L is a function lattice, P is multiplication by the characteristic
function of supp u, and, in general lattices, Py = va-i(nu A y*)— voo(nu Ay")
for y € L). Set yiil = Px... It is clear that condition (1) holds for [|x;., — y}:i|.
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Indeed, one obtains from the definition of u that |xj.—Px.|=
27k E |y =27k 7.

Set yi*' =yl — Py! for 1 =i =j. Then obviously |y!*'|alyl*|=0for 1=i<
h=j+1and 0=|y!""|=|x| for 1 =i =j + 1. Hence the proof will be complete
if we can show that |Py!||=|ly! — yi"'| <27'k 2. Observe that |Py!|=P|yi|=
PEi_|yi) =2k%x;.|, and hence y*¥(|Py!|)=jx*(|Pyi|) = 2jk’*x*(|x;+]) <2k’e
whence

Iyt = Pylllz y*(yi - Pyl = lyill - 2ke.
Since L satisfies a lower I, estimate, we have that
1Pyl =lly:ll* = llyt = Py
so that
1Pyl Dlyil — dlyill—2K%e) 17 S [1— (1 - 2k%e)"]"* =27k
as desired. This completes the proof.
Before stating the next lemma, let us recall some notation. Given a system of

vectors (x;)2, in a Banach space, the Rademacher elements r,, - - -, . over (x;)
are defined by

2k
r= in;
i=1

k-t 2k

= X=X
i=1 i=2"le1
2k -2 2k—1 3.2k -2 2k
r;=2x.—— Z X, + 2 Xi — z Xiy* "
=1 i=2% 241 i=2¢"14 i=325"241
Ye =X1— X2+ X3—Xs"** — Xoke

Observe that if the x;’s are disjoint vectors in a Banach lattice, then all the
Rademacher elements over the x;’s have the same norm.

LemMa 2. There is a constant ¢ = c(q) <« so that if (x;)i~ are disjoint
unit vectors in L (which is assumed to have a lower |, estimate) and
27 = (1= axn ||/ |=axi ) =2 for every hy<h:< --- < h. and every set of
scalars {a;}, then the normalized Rademacher elements (|r\|™" r)., are
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c-equivalent to the unit vector basis of 15. Further, there is x*=0 in L* with
|x*||=1 for which ||x |k« =x*(x|)=(12c)7|x | for each x € [r]t-..

Proor. The first conclusion was verified in [15]; the constant ¢ depends only
on the constants in Khintchine’s inequalities for L,[0, 1] and L,[0,1].

Using a space isometry of L, we can assume that x; = 0 for 1 =i <2 Indeed,
if P is the band projection on L generated by x7, then Sx = x — 23 ,Px
defines an isometry on L so that Sx; = 0for 1 =i =2* and |Sx| = |x|forx € L.

Let z* be the functional in the dual of [x;]i, defined by

2k 2k 2k
Z*(Z C[X() = Z—k(zc.‘)‘ Zx.' .

i=1 i=1 i=1
In view of our assumptions on the system {x;}i, it is easy to check that
1=|z*|=4. Let now x* be any non-negative Hahn-Banach extension of
lz*["-z* to an element of L*. Then

X*x) =[lz*"-2

Zx.

2k
z.x,- .

2k
%

ie. 4727k =x*x)=2*

We also have

2k
x*(nD =z *™ | 2 x

2k 2%
i.e. 4_l in Zx,- .
i=1 i=1
Thus, in the abstract L-space (L, || - || .-) the x,’s are disjoint vectors having
essentially the same norm, so by the classical Khintchine inequality in L,, we
have that

sx*(|n)=

2k

2.

=1

k 1/2
2 (S
x* i=1

On the other hand, since the normalized Rademacher elements are c-
equivalent to the unit vector basis of /%,

[Z ] = e(Zeur) "

k
iTi
=1

2K

2%
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which means that [[x|.- = (12¢)7'||x|| for all x €[r;]i-..

LemMA 3. Assume X is a super-reflexive subspace of L and ¢ >0. Then
there is a constant \ so that for every n there is k(n) such that if H is a subspace
of X with dim H = k(n) for which there exists x* € L*, x* =0, | x*||=1 with
|x ls== c ||x || for all x € H, then H contains an n dimensional subspace which is
A-complemented in X.

Proor. We need the following generalization by Maurey [10] of a theorem
of Rosenthal’s [13]:

There are a constant 7 and 2>p >1so that if T: X — L.(u) is an operator
from X into L (1) for some measure ., then there are a measure v and operators
S:X—->L,(v),U:L,(v)— L) for which US = T, |IS|| = 7 |T|, and |U| = 1.

We also need the fact that L,(v) is, for 2> p > 1, locally 7-Euclidean. As
observed by Pelczynski and Rosenthal [12], this follows from the argument
used in [2]. Let 7, p be as given by the Rosenthal-Maurey Theorem and let
k = k(n) and M be such that every k(n) dimensional subspace of L,{0, 1] (and
hence of L,(v) for arbitrary ») has an n-dimensional subspace which is
M-complemented in L,.

Suppose that H and x* are as in the hypothesis. Let T : (L, - [) = comple-
tion of (L,|-|x-) be the formal identity and let X => L,(v)%> completion of
(L,||- [+ be a factorization of T satisfying ||S||=r;||U|[=1. Let P be a
projection from L,(v) onto an n-dimensional subspace of SH with ||P||= M.
Now ||Tx |- = c|ix|| for x € H, hence (since |U]| = 1), [Sx ||, = ¢||x| for x € H.
Thus the operator Q = S™'PS is a projection from X onto an n-dimensional
subspace of H, and ||Q|| = ¢ 'M~. This completes the proof.

Proor oF THEOREM 1, PAarRT B. Of course, by Dvoretzky’s theorem we may
assume that d(H,, ;™) =2 for each n. Let d(n) = max {m : H, contains unit
vectors (x:)iL, for which there are (y.)", in L so that 0=|y|=|x/| and
ixi = yill<@m)™" for 1=i=m}. We can decompose (H,) into two subse-
quences (one of which may be void) (H,,) and (H,,) so that d(n)— » and
supd(m;) <o, By Lemma 1, there is € >0 so that inf §(H,,) > ¢ >0. Hence
there are x¥=0in L* with | x*||=1 and ||x |l: = €||x || for all x € H,., whence
from Lemma 3 we conclude the existence of subspaces G,., C H,, with
dim G,,, >« and G., being uniformly complemented in X.

We look now at the H,’s. A standard perturbation argument yields the
existence of isomorphisms T; from L onto L with ||T; — Identity|| =3 so that
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T.H,, contains a sequence of length d(n:) of disjoint unit vectors. Thus we can
assume without loss of generality that H, itself contains such a sequence. We
use now the following special case of a result of Brunel-Sucheston [1]: Given n,
there is M = M(n) so that if (y:)!, are disjoint unit vectors in a lattice, then
there is a subsequence (x:)i-=, of (¥:)/Z, such that

27! §< Zaix,., / 2aix,- >§2

for every h, < +++ <Hhn

and every set of scalars {a;}. Since d(n,) — ©, we obtain from Lemmas 2 and 3
that H,, D G, with dim G,, =« and (G,,) uniformly complemented in X.

ReMArk 1. If X has local unconditional structure, then either X contains
(necessarily uniformly complemented) /= uniformly for all n or, by a theorem
from [3], X is isomorphic to a subspace of a Banach lattice L which does not
contain /. uniformly for large n. Thus, by Theorem 1, the uniformly com-
plemented 1. conjecture is true for such an X.

ReEmaRK 2. The example of James constructed in [4] does not contain either
7 or |2 uniformly for large n and in view of the results of [16], does not
isomorphically embed into a Banach lattice which does not contain /2 uni-
formly for large n. However, it might be true that every super-reflexive Banach
space isomorphically embeds into a Banach lattice which does not contain /=
for all n.

ReMaRK 3. The infinite dimensional version of Part B of Theorem 1 is false.
In [8], a super-refliexive Banach space with unconditional basis is constructed
so that it contains a copy of I, but no copy of /. is complemented in the space.
However, a simpler version of the proof of Theorem 1 and the known fact (cf.,
e.g. [12] for a proof) that every copy of [ in L, (1 <p <2) contains an infinite
dimensional subspace complemented in L, yields that if Lis a super-reflexive
Banach lattice in which no sequence of disjoint vectors is equivalent to the unit
vector basis of [, then every copy of [, in L contains an infinite dimensional
subspace which is complemented in L.
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