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ON THE LOCAL STRUCTURE OF SUBSPACES OF 

BANACH LATTICES 

BY 

W .  B.  J O H N S O N *  AND L .  T Z A F R I R I  

ABSTRACT 

The conjecture that every Banach space contains uniformly complemented 
l~,'s for some I _-< p _-< ~ is verified for subspaces of Banach lattices which do 
not contain l~'s uniformly. 

I. One of the main problems in the study of local (i.e., finite dimensional) 

s tructure of Banach spaces is whether  Lindenst rauss '  [7] "uni formly com- 

plemented l~-conjecture"  is true; i.e., whether  every  infinite dimensional 

Banach space X contains a uniformly complemented  sequence (En) of 

subspaces  such that, for  some p, 1 _---p _-< oo, sup d(En, l~,)< oo. (Here  d(E,F)  is 

the Banach-Mazur  distance coefficient inf{lITll.llT-'ll : T is an isomorphism f rom 

E onto F}.) Recently the second-named author verified the uniformly com- 

plemented l~-conjecture for  Banach spaces X which have an unconditional 

basis (cf. [15]). It follows f rom the main result in the present  paper  that the 

uniformly complemented  l~-conjecture is also true for Banach spaces which 

are Banach lattices or, more generally, have local unconditional structure. Our 

main result, combined with the results in [5], in fact  yields the following: 

THEOREM 1. Suppose that X is a subspace of a Banach lattice L and L does 

not contain 12 uniformly for all n. 

A. Given K < oo, e > 0 and an integer n, there is an integer N = N ( K, e, L )  so 

that if E C_ X and d (E, ! 7 ) <- K, then E D_ F with d (F, ! 7 ) =< 1 + e and F is 1 + e - 

complemented in L. Moreover, if X is not super-reflexive, then X contains 17 

uniformly for large n. 

B. If X is super-reflexive, then given any sequence (H,)  of  subspaces of X with 

dim Hn --~ oo, there is a uniformly complemented sequence of subspaces (Gn) 

with Gn C_Hn, d(Gn, lk, t'~)<-2, and k(n)---~oo. 
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Part A of Theorem 1 was proved in [5]. After this paper was submitted, we 

realized in conversations with Pelczynski and Rosenthal that by using the 

argument for  case B and considerably more machinery,  it can be shown in case 

B that X is locally ~r-Euclidean in the sense of Pelczynski and Rosenthal [12]; 

i.e., there is a h < do so that for  each integer n, there is N = N ( n )  such that if 

E C _ X  and dimE>=N(n)  then ED_F with d ( F , l ~ ) < 2  and F is A- 

complemented in X. 

Part B gives a wide class of super-reflexive spaces which are sufficiently 

Euclidean in the sense of Stegall and Retherford [14]; i.e., which contain 

uniformly complemented copies of l~ for all n. It should be noted that 

super-reflexivity cannot be replaced by reflexivity in Part B, since in [6] a 

reflexive Banach space with unconditional basis is constructed which does not 

contain I~ uniformly for all n but which is not sufficiently Euclidean. 

As an immediate corollary of Theorem 1, we have 

COROLLARY 1. If  X is a subspace of a Banach lattice which does not contain 

l~ uniformly for all n, then X contains uniformly complemented subspaces E, 

with sup d (Eo, 17 ) < do or sup d (E~, l ~ ) < oo. 

We use standard Banach space theory notation as may be found in [9]. For  

definitions of not yet standard terms (e.g., local unconditional structure) see [5]. 

II. The main result 

Throughout  this section we assume that X is a subspace of a Banach lattice 

L for which there is q < do so that if x, y E L with Ix I^ [Yl = 0, then IIx + yll q' -> 

IIxll q + Ily[I q, i.e. L admits a lower l, estimate. It was observed in [5] that if L is 

any Banach lattice which does not contain lg uniformly for large n, then there 

is q < ~ and an equivalent lattice norm on L which satisfies such a lower lq 

estimate. Indeed, by Corollary III.4 in [5] or Maurey's  generalization [10] of a 

result of Rosenthal [13], if (L, Ill" Ill) is a Banach lattice which does not contain 

l~ uniformly for all n, there exist c > 0  and q <oo so that Ill Xx, Ill q--> 

c (y~ III x, III ~) whenever  (x,) C L with Ix, ] A lx, l -- 0 for i ~ j. Define I1 II on L by 
Ilx II = sup ((Z (11 x, Ill " ) ' j " :  Ix, I^ fx, I - -0  for i # ]  and Xxi = x}; it is easy to check  

that II-11 is an equivalent Banach lattice norm on L which satisfies a lower lq 

estimate. 

We would like to recall some observations, most of which are due to 

Meyer-Nieberg [11]. Given a non-negative functional x* on L with llx*ll = 1, 

one can define a semi-norm I1" II x. on L by setting [Ix II..--x*(Ix I). It is clear 

that [I " [] .- is additive on the positive cone of L, hence (after dividing out by 
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the ideal {x : x *(Ix D = 0}) the completion of (L, II • II ~.) is an abstract L- space 

which is isometric to L , ( g )  for some measure Ix, by Kakutani 's  well-known 

theorem. Obviously, the natural identity mapping from (L, II • II ) to  (L,  II • II ~-) 
is norm decreasing. Now since (L, I1" II) satisfies a lower !¢ estimate, L is 

~r-complete and cr-order continuous, so that in fact the image of L in L,( t t )  is 

an order ideal. 

Given a finite dimensional subspace H of L, we will be interested in the 

behavior of the ratio between IIx !1 and II x II ~- as x ranges over H and x* over 

nonnegative functionals of unit norm. We let 

8(H) = sup inf {x*(Ix I) : x ~ H, Ilx II = l~. 
x * ~o;llx *11~ ' 

Our first main step in the proof of Part B in Theorem 1 will be to show that if 

8 (H) is small, then H contains a " long" finite sequence of vectors which are 

almost disjoint. More precisely, we have 

LEMMA 1. Given k there is 0 < • = e (k, q )  so that  i[ H is a subpace  o f  L and  

8 ( H )  < •, then there are unit  vectors  (x~)~.~ in H and disjoint  vectors  (y~)~ in L 

so that  0--<ly, I---lx, I and [[x , -y ,  ll<=(Ek) -' f o r  l<=i<-k .  

PROOF. The argument used here was suggested by the proof of Proposition 

3. I in [ 12]. Choose ~ = ~ (k, q) so that [ 1 - (1 - 2k 3~)q ]uq < 2-'k -2. If B (H) < ~, 
we show that ~ h k h (x~)i., and (y i)h~,~zz can be constructed by induction so that for 

each j, 1 ___-j = k ,  (y[){~, are disjoint, 0_-<ly~l_-<lx, I, and 

(1) I l x , - / 1 1  < ¢J - 1) 2 - ' k -2 .  

After showing this we will set y~ =y ,  thus completing the proof. 

For the first step, simply choose a unit vector x, in H and set y', = x,. Suppose 

that (x,)~=, and (y{)~_, have been defined to satisfy (1). For 1 =< i < j ,  choose 

non-negative y ' E L *  so that Ily*,ll=l and y*(ly{l)=lly[[[,  o f  necessity, 

y*(yl,) = 0 for i ~  h. Let  x* = (E{.,y*).  II~:[-,y*[[-'. By the definition of 8(H),  

there is a unit vector xi+, in H, for which x*([xj+,]) < ~. 

Let  u = (Ixj+,l - 2-'k-2E{=,ly{ I) +. 

(If L is a function lattice, the support of u is the set where Ix,+,l is larger than a 

small multiple of 2~=,[Y{I). Let P be the band projection on L generated by u 

(so that if L is a function lattice, P is multiplication by the characteristic 

function of supp u, and, in general lattices, Py = v:=,(nu ^ y + ) -  v~_,(nu a y-) 

for y E L ) .  Set i+, Yi+, = Px~+~. It is clear that condition (1) holds for Ilx,+, ..,÷, i - -  Y l + l  • 
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Indeed ,  one  obtains  f rom the definit ion of  u that  I lxj+,-Pxj+,l l_-  < 

2-'k-~ll Y~I~, I Y~ III--< 2- 'k-2j.  
• 1 + I  j + l  Set y{+ '=  yl - P y {  fo r  1 _<-i <_-j. Then  obv ious ly  ]y, t^Iyh I = 0  for  1 < i  < 

h _-<j + 1 and 0 _-< ]Y{+'I --< Ix, I for  1 _-< i <_-j + 1. H e n c e  the p roof  will be comple t e  

if we can show that  IIPy1[I--Ilyl - y{+'[[ < 2 - 'k-2.  Obse rve  that  IPy~I-- Plyl l  <= 

P(X1=,lyl I) -<- 2k21x,+,l, and hence  y*(lPy{ 1) _--- jx*(IPyl I) --< 2jk2x*(IxJ+d) < 2k3~ 
whence  

[lyl - Pyl [P ~ y ,*(lY{ - PY~ l) ~ Ily~ II-  2k 3~. 

Since L satisfies a lower  lq es t imate ,  we have  that  

IIPy~II" ~ Ilyilt" -]]y~ - Py~II ~ 

so that  

IIPY~II ~ [lly{[I q - (llylrl- 2k3e)q] '/q <- [1 - (1 - 2k'E)q ] '/q _--< 2- 'k  -2 

as desired.  This  comple t e s  the proof .  

Be fo re  stating the nex t  lemma,  let us recall  some notat ion.  Given  a sys tem of  

vec tors  (x,)Z~, in a Banach  space,  the R a d e m a c h e r  e lements  r , , . . . ,  rk ove r  (x~) 

are defined by 

2 k 

X r l  = Xi, 
i = l  

2 k t 2 k 

r2= ~ x , -  Z x,;  
i = 1  i = 2  k 1+1  

2 k - ~  2 k I 3 . 2  k - 2  2 k 

r 3 = 2 x ,  - 2 x , +  ~'~ x , -  2 x , , . . .  
I = 1 i = 2  k - 2 +  1 i = 2 k - I + 1 i = 3-2  k - 2 +  1 

rk  -~  X l  - -  X 2 - F  X 3 - -  X 4  . . . .  X 2 k .  

Obse rve  that  if the xi 's  are disjoint  vec tors  in a Banach  lattice, then all the 

R a d e m a c h e r  e lements  ove r  the x, 's  have  the same norm.  

LEMMA 2. There is a cons tan t  c = c (q ) < ~ so that  if  (x,)Z~=~ are disjoint 

unit vectors in L (which is a s sumed  to have a lower lq es t imate)  and 

2-' <-_ (llyV=,a,x,, I[/[lY?=,a, x, II) -< 2 for  every h, < h2 < " "  < h,, and every set o f  

scalars {a,}, then the normalized R a d e m a c h e r  elements (llr, ll-' . r , )L,  are 
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c-equivalent to the unit vector basis o f  I~. Further, there is x*>=O in L* with 

II x* II = 1 for which I[ x Ilx. = x*(I x l) => (12c)-'11 x II/or each x E [r, ]~.~. 

PROOF. The first conclusion was verified in [15]; the constant c depends only 

on the constants in Khintchine's inequalities for L,[0, 1] and Lq [0, 1]. 

Using a space isometry of L, we can assume that xi => 0 for 1 _-< i _-< 2 k. Indeed, 

if P, is the band projection on L generated by xT, then Sx = x - 2 E ~ I P ~ x  

defines an isometry on L so that Sx, >-_- 0 for 1 = i =< 2 k and ]Sx I = Ix l for x E L. 

Let z* be the functional in the dual of [x,]~.l defined by 

2 k 2 k 2 ~   ( c/ll x,iI 
In view of our assumptions on the system {x,},2~., it is easy to check that 

1--<llz*l[----4. Let now x* be any non-negative Hahn-Banach extension of 
Ilz*H-t.z * to an element of L*.  Then 

We also have 

i.e. 

JJ x*(x,) = IIz*ll-'.2 -k x, 

~l =' ~x,.2' I 4-1"2 -k ~Xi =<X*(Xi)=<2 -k 

x*<[r,I) = Hz*ll -'o ~x,  

II tl Ir II i.e. 4-' x, _-< x*(Ir~l) _-< x , .  

Thus, in the abstract L-space (L, I1" II x.) the x, 's are disjoint vectors having 

essentially the same norm, so by the classical Khintchine inequality in L, ,  we 
have that 

k k ! / 2  2 k 

On the other hand, since the normalized Rademacher elements are c- 
equivalent to the unit vector basis of l ,  k, 
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LEMMA 3. Assume X is a super-reflexive subspace o [ L  and c > O. Then 

there is a constant A so that for every n there is k(n ) such that if H is a subspace 

of X with dim H > k(n)  for which there exists x* ~ L* ,  x* > O, [Ix*l[ = 1 with 

II x II~" >>- c [Ix II [or all x ~ H, then H contains an n dimensional subspace which is 

A-complemented in X. 

PROOF. We need the following generalization by Maurey [10] of a theorem 

of Rosenthal 's [13]: 

There are a constant z and 2 > p  > l so that if T : X ---~ L t(lz ) is an operator 

from X into L ~(Ix ) for some measure I~, then there are a measure v and operators 

S : X ~ L~ (v), U : L,  (v)--* L,(lz ) [or which US = T, tIS II < • II Tll, and II u ll = I. 

We also need the fact that Lp(v) is, for 2 > p  > 1, locally zr-Euclidean. As 

observed by Pelczynski and Rosenthal [12], this follows from the argument 

used in [2]. Let ~', p be as given by the Rosenthal-Maurey Theorem and let 

k = k(n)  and M be such that every k(n)  dimensional subspace of Lp[0, I] (and 

hence of L~(v) for arbitrary v) has an n-dimensional subspace which is 

M-complemented in L.. 

Suppose that H and x* are as in the hypothesis. Let  T : (L, II" II) ~ comple- 
S U 

tion of (z,  ll. IIx.) be the formal identity and let X---> L~(v)---> completion of 
(L, II'II~.) be a factorization of T satisfying (tsl[_-<r;fff{l= 1. Let P be a 

projection from L . ( v )  onto an n-dimensional subspace of S H  with IIPIt _--< M. 

Now IITxllx--> cllxll for x E H, hence (since IIUII--- 1), IlSxll~,,~, >= cllxll for x E n .  
Thus the operator Q = S - ' P S  is a projection from X onto an n-dimensional 

subspace of H, and IIQII--< c- 'Mz.  This completes the proof. 

PROOF OF THEOREM l ,  PART B. Of course, by Dvoretzky's  theorem we may 

assume that d(H,,/2 o~mH-) _-< 2 for each n. Let d(n)  = max {m :/4,  contains unit 

vectors (xi)7=l for which there are (yi)7~l in L so that O<-]y,l<-_lx, I and 

IIx,-y~ll<(2m) -~ for 1-<i_-<m}. We can decompose (H.)  into two subse- 

quences (one of which may be void) (H,,) and (H=,) so that d(n,)---~oo and 

supd(m,)<oo.  By Lemma l, there is e > 0  so that i n f 3 ( H . , ) > ,  > 0 .  Hence 

there are x* = 0 in L*  with Ilx*ll = 1 and llx ll~; => ~ll x II for all x ~ H.,,  whence 

from Lemma 3 we conclude the existence of subspaces G=, C_ H., with 

dim G.,---> ~ and G., being uniformly complemented in X. 

We look now at the H~,'s. A standard perturbation argument yields the 

existence of isomorphisms Tt from L onto L with IIT~ -Identi tyl l  =< ½ so that 
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T~H,, contains a sequence of length d(n , )  of disjoint unit vectors. Thus we can 

assume without loss of generality that H~, itself contains such a sequence. We 

use now the following special case of a result of Brunel-Sucheston [1]: Given n, 

there is M = M ( n )  so that if (y,)~, are disjoint unit vectors in a lattice, then 

there is a subsequence (xi)7=~ of ( y i ) ~  such that 

2 -~ <- a~xh. aixi ~ 2 

for every h ~ < . . .  <hm 

and every set of scalars {a~}. Since d(n,)--~oo, we obtain from Lemmas 2 and 3 

that H,, _D Gn, with dimGn, ~oo and (G~,) uniformly complemented in X. 

REMARK 1. If X has local unconditional structure, then either X contains 

(necessarily uniformly complemented) lg uniformly for all n or, by a theorem 

from [3], X is isomorphic to a subspace of a Banach lattice L which does not 

contain lg uniformly for large n. Thus, by Theorem 1, the uniformly com- 

plemented 1~ conjecture is true for such an X. 

REMARK 2. The example of James constructed in [4] does not contain either 

l~' or l~ uniformly for large n and in view of the results of [16], does not 

isomorphically embed into a Banach lattice which does not contain lg uni- 

formly for large n. However,  it might be true that every super-reflexive Banach 

space isomorphically embeds into a Banach lattice which does not contain l~ 

for all n. 

REMARK 3. The infinite dimensional version of Part B of Theorem 1 is false. 

In [8], a super-reflexive Banach space with unconditional basis is constructed 

so that it contains a copy of 12 but no copy of 12 is complemented in the space. 

However,  a simpler version of the proof of Theorem 1 and the known fact (cf., 

e.g. [12] for a proof) that every copy of 12 in Lp (1 < p < 2) contains an infinite 

dimensional subspace complemented in Lp yields that if L i s a  super-reflexive 

Banach lattice in which no sequence of disjoint vectors is equivalent to the unit 

vector basis of 12, then every copy of 12 in L contains an infinite dimensional 

subspace which is complemented in L. 

| .  
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